XNRGI (exponential energy) ~ New Battery Architecture 

XNRGI (exponential energy) has developed the first-ever porous silicon chip based Lithium Metal rechargeable battery technology. XNRGI’s 15 issued patents, 13 applications, and 6 patent disclosures, were developed over a 15-year period with more than $80-million of investment from Intel, Motorola, Energizer, the United States Navy, Argonne National Laboratory / United States Department of Energy Department of Energy grant for advance manufacturing and Novellus Systems, among others. XNRGI’s technologies enable scalable, high-volume manufacturing at the industry’s lowest cost, by using existing semiconductor wafer manufacturing and contract assembly which have been perfected in Silicon Valley over the past 20 years. This combination of original technologies and proven manufacturing processes provides XNRGI with an unprecedented manufacturing scale and at a low cost with minimal CapEx.

A New Architecture for Stored Power

Energy Density in batteries is the primary bottleneck to the global mass adoption of Electric Vehicles (EVs) and Renewable Energy (like solar and wind power). Today’s batteries have a short life, are too costly, too large, and too heavy, so they limit a vast array of applications. Batteries often require specialized manufacturing facilities for different applications, which limits the opportunities to cost-efficiently scale manufacturing and create enough power to meet global stored energy demands.

Currently, the total global annual production capacity for battery technology stands at 150 gigawatts. By 2050, the global renewable energy demand for the grid alone will be 42-terawatts, according to the IPCC (Intergovernmental Panel on Climate Control). Additionally, multiple terawatts will also be needed for transport and the electrification of other emerging markets. And, this volume of power, will not come from the grid because according to Lawrence Livermore Labs, 68% of all energy that is contributed to the U.S. grid is “wasted” through resistance, transmission, transfers, and curtailment (energy that is rejected when it cannot be used or stored, since the grid is not a battery).

There is clearly an overwhelming need to find a cost-efficient, scalable manufacturing architecture for batteries that can meet changes in density, size, weight, and shape for every use case, including Transport, Grid, Consumer Electronics, the Internet of Things, and everything in between. Moreover, this architecture would need to facilitate the mass production of batteries that are safe, tunable, and affordable.

Such an application, could, in itself, make renewable energy viable to meet the exponential global growth of stored energy demand.

The Solution

XNRGI, with its new architecture for stored power, is the solution. It is the only technology that is able to scale battery production, using existing battery manufacturing infrastructure, to terawatt capacity. All other battery technologies require extremely large capital expenditures and several years to build-out the capacity that XNRGI already has in place. XNRGI can immediately enable battery manufacturing to scale to the cost levels necessary to meet demand of emerging markets and ultimately replace fossil fuel energy.

“The arrival of cheap battery storage will mean that it becomes increasingly possible to finesse the delivery of electricity from wind and solar, so that these technologies can help meet demand even when the wind isn’t blowing and the sun isn’t shining. The result will be renewables eating up more and more of the existing market for coal, gas and nuclear.” Bloomberg NEO 2018

XNRGI: A New Battery Architecture 

XNRGI, recently funded by a US Department of Energy (DOE) grant for advance manufacturing of the X- PowerChipTM, has developed a game-changing, high-performance, rechargeable lithium metal battery (using a 3D porous silicon structure as the electrode substrate), which can be manufactured using a low-cost, contract-based, semiconductor foundry model to reduce CapEx costs by 95% (compared to traditional battery factories that require billions to build and years to construct). Most importantly, the semiconductor manufacturing foundation of the XNRGI battery will allow the technology to improve along the same path as semiconductor improvements (i.e., Moore’s Law), while lithium-ion technology is approaching its limited potential for improvement.

The XNRGI technology platform is based on the most versatile manufacturing platform that the battery industry has seen in its long history. It has solved numerous disadvantages of old conventional legacy battery technology that has plagued the battery industry during the past 30 years. XNRGI’s Lithium Metal anode has 10-times the energy density of a standard Lithium Ion anode. Combined with XNRGI’s 3D pores that increase the active surface area of the battery by 70-times, performance is dramatically improved. At the same time, XNRGI’s 3D pores create a cool and safe architecture for any battery chemistry, basically eliminating concerns of overheating and fire, which have plagued other Lithium Ion batteries. The XNRGI battery design is “chemistry” agnostic as it does not restrict use of almost any cathode material, including the most common LCO, NMC, NCA, or LFP cathode materials. The main advantages of this method include: high energy density today demonstrating Lithium Metal battery at (> 1600 Wh/L) 405 Wh/kg and, XNRGI’s next generation battery in 2020 Lithium Metal Air at (4400 Wh/L), 680 Wh/kg with high currents that enable fast charge and discharge, long cycle life based on elimination of lithium dendrite formation, greatly improved safety, and low-cost batch fabrication. XNRGI’s 3D architecture provides a safe house of new chemistries to be safely contained for future high energy density materials, which can be manufactured in high volumes – a flexible architecture foundation platform for the evolution and design of batteries in the future.